Abstract

While tests of basic motor abilities such as speed, maximum strength or endurance are well recognized, testing of complex motor functions such as agility remains unresolved in current literature. Therefore, the aim of this review was to evaluate which main factor or factor structures quantitatively determine agility. In methodological detail, this review focused on research that explained or described the relationships between latent variables in a factorial model of agility using approaches such as principal component analysis, factor analysis and structural equation modeling. Four research studies met the defined inclusion criteria. No quantitative empirical research was found that tried to verify the quality of the whole suggested model of the main factors determining agility through the use of a structural equation modeling (SEM) approach or a confirmatory factor analysis. From the whole structure of agility, only change of direction speed (CODS) and some of its subtests were appropriately analyzed. The combination of common CODS tests is reliable and useful to estimate performance in sub-elite athletes; however, for elite athletes, CODS tests must be specific to the needs of a particular sport discipline. Sprinting and jumping tests are stronger factors for CODS than explosive strength and maximum strength tests. The authors suggest the need to verify the agility factorial model by a second generation data analysis technique such as SEM.

Key words: change of direction; testing; sports training; motor abilities

https://www.degruyter.com/view/j/hukin.2015.52.issue-1/hukin-2015-0199/hukin-2015-0199.xml?format=INT